Associate Professor
PhD, Applied Mathematics, Technische Universiteit Delft, The Netherlands (2005)


Postdoc TU Berlin, Germany (2006-2007)

Postdoc University of British Columbia (2007-2009)

Alfaisal University, Riyadh (2009-2012)

Nazarbayev University (2012-2019)


Abu Dhabi - Khalifa City, MF2.1.009


+971-2-599 3289

Teaching Areas

Applied Mathematics, Numerical Analysis, Optimization, Numerical Linear Algebra

Research and Professional Activities

Large scale wave computation, ocean wave simulation, fast iterative methods for large systems, PDE constrained optimization, matrix analysis, numerical solution of differential equations, nonlinear financial option/bond pricing


  • Society of Industrial and Applied Mathematics, American Mathematical Society


  • B. Kurmanbek, Y. A. Erlangga, Y. Amanbek, Inverse properties of a class of seven-diagonal (near) Toeplitz matrices, Special Matrices, 10(1) (2022), pp. 67–86.

  • B. Kurmanbek, Y. A. Erlangga, Y. Amanbek, Explicit inverse of near Toeplitz pentadiagonal matrices related to higher order difference operators, Results in Applied Mathematics, 11 (2021), 100164

  • Y. Amanbek, Z. Du, Y. Erlangga, C. da Fonseca, B. Kurmanbek, A. Pereira, Explicit determinantal formula for a class of banded matrices, Open Mathematics, 18(1) (2020), pp. 1227–1229.

  • B. Kurmanbek, Y. Amanbek, Y.A. Erlangga, A proof of Andjelic-Fonseca conjectures on the determinant of some Toeplitz matrices and their generalization, Linear and Multilinear Algebra, (2020), pp. 1–8.

  • Y. A. Erlangga and R. Nabben, On the Convergence of Two-level Krylov Methods for Singular Symmetric Systems, Numerical Linear Algebra with Applications, 24(6), 2017. Online:

  • Y. A. Erlangga, L. Garcia-Ramos, and R. Nabben, The Multilevel Krylov-Multigrid Method for the Helmholtz Equation preconditioned by the shifted Laplacian, in Modern Solvers for Helmholtz Problems, D. Lahaye, J. Tang, and C. Vuik (Eds), 2017, pp. 113–139, Birkhauser.

  • Y. A. Erlangga, R. Nabben, Algebraic multilevel Krylov methods, SIAM Journal on Scientific Computing, 31 (2009), pp. 1417–1437.

  • Y. A. Erlangga, R. Nabben, Multilevel projection-based nested Krylov iteration for boundary value problems. SIAM Journal on Scientific Computing, 30(3)(2008), pp. 1572–1595.

  • Y. A. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation. Archives of Computational Methods in Engineering 15 (2008), 37–66

  • Y. A. Erlangga, C.W. Oosterlee, C. Vuik, A novel multigrid-based preconditioner for the heterogeneous Helmholtz equation, SIAM Journal on Scientific Computing, 27 (2006), pp. 1471- 1492.